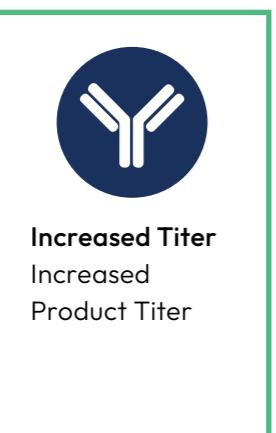


HAMILTON

Optical Dissolved CO₂ Sensors

Real-Time and Maintenance-Free CO₂NTROL for Bioprocesses

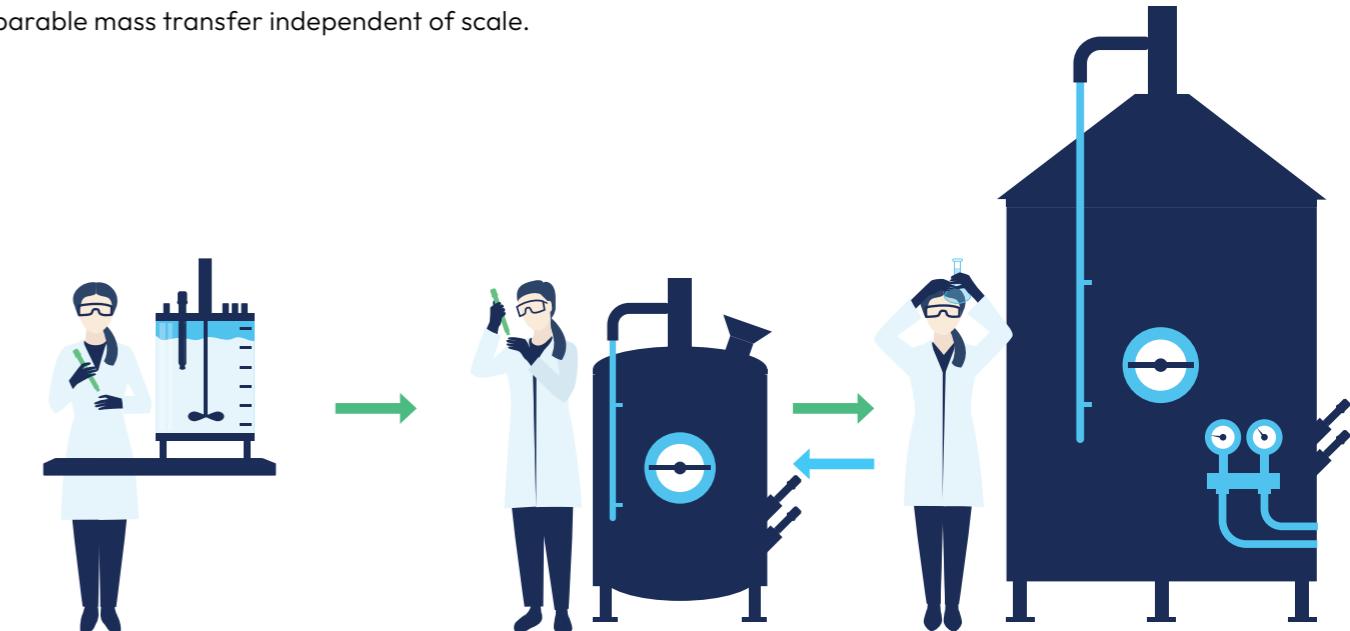

Is Your Process in CO₂NTROL?

Increase Yield and Consistency

New research shows that active control of dissolved CO₂ (DCO₂) in bioproduction increases product yield and improves consistency of process scale-up and scale-down. Traditional electrochemical sensors indirectly measure DCO₂, are maintenance intensive, and are prone to measurement drift. CO₂NTROL is a solid-state optical sensor that directly measures DCO₂ and provides maintenance-free, real-time, and in-line control of this new critical process parameter.

Automated Control of DCO₂ Enables:

Increased Titer
Increased Product Titer


Reproducibility
Better Batch-to-Batch Reproducibility

Consistency
More Consistency from R&D to Production Scale Reactors

Bioreactor Size Impacts CO₂

Large and small bioreactors have Mass Transfer Coefficients (k_{Ld}) that change the dissolution and stripping characteristics from reactor to reactor. As a result the same control strategy will result in different CO₂ accumulation across R&D, PD, and Production scale reactors. Only real-time control of DCO₂ to an optimized profile will result in comparable mass transfer independent of scale.

R&D

OPTIMIZING YIELD

While the small surface area to volume ratio of a typical R&D reactor means that CO₂ accumulation is minimal, real-time control of CO₂ is critical to define the optimal setpoint and optimize product yield.

Process Development

SCALE UP

Mimicking sparging and stripping strategies optimized for R&D will result in different conditions as the surface-to-volume ratio decreases. Therefore, active control of an optimal DCO₂ profile ensures consistency across scales.

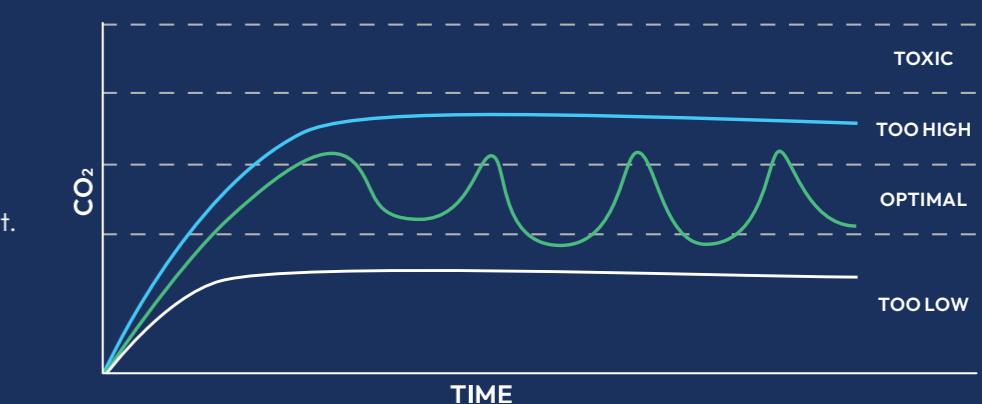
Production

SCALE DOWN

For existing processes that were developed without DCO₂ control, the efficiency of scale-down studies can be improved by actively controlling DCO₂ to mimic the profile seen in the production reactor.

Impact of CO₂ on Process Performance

Excessive Accumulation

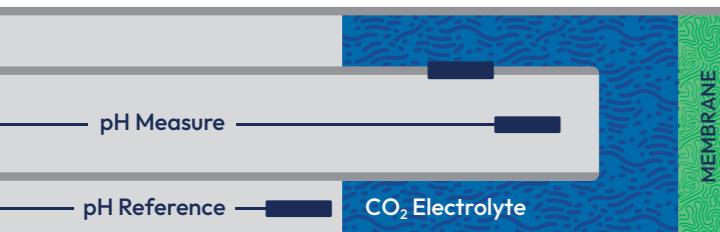

During a process, excess CO₂ accumulation is common as cell concentration increases and more metabolic CO₂ is produced. This accumulation reduces intracellular pH, resulting in slower enzymatic activity or delayed lactate shift. The outcome is lower production quantity and quality.

Excessive Removal

Aggressive aeration and mixing can prevent detrimental accumulation of CO₂. However, too little CO₂ can slow cell growth, metabolism, and productivity by starving cells of CO₂ needed for the formation of metabolic intermediates. Excessive removal can also reduce buffer capacity in bicarbonate systems.

Uncontrolled CO₂ range

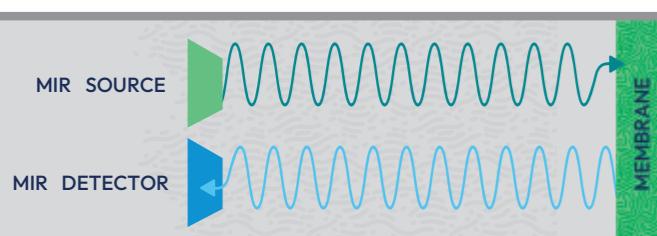
Media addition and process adjustments can result in large swings in dissolved CO₂ that may go unnoticed with infrequent offline monitoring and adjustment. Continuous inline control at the optimal level yields increased viable cell density, production phase duration, and titer.



Maintenance-Free Solid-State CO₂

Direct vs. Indirect

Traditional electrochemical sensors measure DCO₂ based on the Severinghaus principle. This indirect measurement method combines the challenges of measuring pH and electrochemical DO into one sensor. The result is significant maintenance effort and multiple sources of drift that must be compensated by time-consuming product calibration. Hamilton's CO₂NTROL is a solid-state sensor (no electrolyte) that directly measures DCO₂ and provides maintenance-free (no consumables), real-time, and in-line control of this important critical process parameter.


Automated control of DCO₂ enables increased titer, better batch-to-batch reproducibility, and more consistency from R&D to production-scale bioreactors.

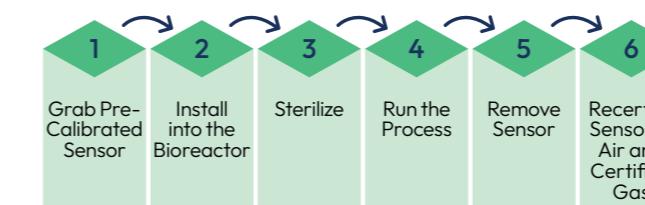
CO₂ Measurement Principles

Severinghaus

CO₂ molecules diffuse through a gas permeable membrane into an electrolyte. CO₂ increases the acidity of the electrolyte which is measured by an internal pH sensor.

CO₂NTROL Optical Measurement

CO₂ molecules diffuse into a gas permeable membrane where the sensor measures the absorption of CO₂-specific middle infrared (MIR) wavelengths. This absorption correlates to the partial pressure of CO₂ in the media.


Streamlined Workflow

The CO₂NTROL development team recognized that for CO₂ to become a critical control parameter, the sensor had to be easy to use and maintain. To achieve this goal, we needed to reduce the complexity and eliminate liquid solutions and replacement parts. The team developed a solid-state MIR design calibrated with certified gas, eliminating the need for product calibration due to drift after sterilization processes.

Severinghaus Sensors

CO₂NTROL Sensors

Simple Calibration
In air and certified gas.

Measuring Range
Designed for bioproduction (5–1000 mbar).

Maintenance-Free
No liquids or replacement parts to change.

Hygienic Design
Compatible with Autoclave, SIP, or CIP. Certified EHEDG.

Inverted Installation
Not affected by mounting orientation.

No Ammonia Fouling
No interference from other dissolved gases.

Get CO₂NTROL

CO₂NTROL is the newest member to Hamilton's Arc Intelligent Sensor line. Embedded electronics convert the MIR CO₂ measurement into standard digital and analog signals that are easily integrated into your control strategy.

Compliant Hygienic Design

CO₂NTROL's hygienic design makes it compliant with requirements of biopharma applications. The sensor is EHEDG certified and is ready for GMP compliance.

Integrated Intelligence

Arc sensors save space and cost with their integrated micro-transmitters. Calibration data is stored in the sensor head enabling high quality lab calibration.

Process Data

The CO₂NTROL sensor transmits process data through a hardwired connection. Communication options include modbus RTU and 4-20 mA, with additional compatibility for OPC UA, PROFINET, PROFIBUS, and FOUNDATION Fieldbus.

Unlock The Secrets of Bioprocessing Excellence

Download And Find Out More

Should CO₂ be a Critical Process Parameter?

White Paper, Pt 1

Should CO₂ be a Critical Process Parameter?

White Paper, Pt 2

Real-Time Monitoring of DCO₂ in Addition to DO

CO₂ App Note

Biopharma PAT

White Paper

Innovative Solutions

Biopharma Upstream & Downstream Brochure

Intelligent Sensors

Brochure

We invite you to join us in our commitment to environmental responsibility by embracing digital documentation.

At Hamilton Company, we value sustainability and strive to minimize our impact on the environment by reducing paper waste, conserving natural resources, and minimizing our collective carbon footprint.

Explore Hamilton's Field Services

Installation Support

Qualification IQ/OQ


Maintenance and Calibration Services

On-site Training

Learn More: www.hamiltoncompany.com/field-services

Note: Our sensors are made to last. To increase sensor lifetime and avoid down-times, Hamilton suggests maintaining their sensors at least once a year by a Hamilton factory trained technician.

Years of Experience
75+

Locations Worldwide
22+

Employees Internationally
3,000+

To find a representative in
your area, please visit:
www.hamiltoncompany.com/contacts

Web: www.hamiltoncompany.com
USA: 800-648-5950
Europe: +41-58-610-10-10

Hamilton Americas & Pacific Rim
Hamilton Company Inc.
4970 Energy Way
Reno, Nevada 89502 USA
Tel: +1-775-858-3000
Fax: +1-775-856-7259
sales@hamiltoncompany.com

Hamilton Europe, Asia & Africa
Hamilton Bonaduz A.G.
Via Crusch 8
CH-7402 Bonaduz, Switzerland
Tel: +41-58-610-10-10
contact.pa.ch@hamilton.ch

